
what we’ve done and where we’re going

Java in a Container world

Jonathan Dowland

jdowland@redhat.com

2021-12-01

1

Working on openjdk and containers since 2015
Presented some work at uksystems 2018

History

2

We’ll start with the history

3

Java
▸ “Write once, run anywhere”

▸ Provide entire runtime

environment

▸ JARs (& WARs, etc.):

redeployable packages

▸ Managed runtime, Java Servlet

specification, sandboxing

Linux Containers

▸ Bundle entire runtime

environment

▸ Open Container Initiative Image

Specification

▸ OCI Runtime spec

There are some similarities between the goals of Java and its ecosystem and Linux
containers

Since in some cases they are both trying to solve similar problems, there can be
issues getting them to work together

The Java Language Environment white paper (1995)

4

Cloud Enablement (2015-18)

https://cekit.io/

I talked in 2018 about Cloud Enablement - work to containerize the Middleware
product portfolio

Approx 10 products 1-2 major versions per product = 20-ish containers (then)

Perhaps the most significant output of that period was the tool cekit: pre-processor for
Dockerfiles
Share build-snippets between images (mixin-style)

Since then: major version of openshift, major version of rhel, two major versions of
openjdk

https://cekit.io/

5

https://docs.openshift.com/container-platform/3.11/dev_guide/application_memory_sizing.html#sizing-openjdk

Shell wrapper script

Configured by environment variables

 java -XX:+UseParallelGC -XX:MinHeapFreeRatio=10

-XX:MaxHeapFreeRatio=20 -XX:GCTimeRatio=4

-XX:AdaptiveSizePolicyWeight=90 -XX:+ExitOnOutOfMemoryError -cp "."

-jar /deployments/spring-boot-sample-simple-1.5.0.BUILD-SNAPSHOT.jar

Resource sizing

https://docs.openshift.com/container-platform/3.11/dev_guide/application_memory_sizing.html#sizing-openjdk

OpenShift Source To Image (S2I)

6

https://github.com/openshift/source-to-image/blob/master/docs/builder_image.md

Openshift 3 headline feature
Produces an application image layered on top of the builder
Containing all the build tools

Now

7

8

JDK 9, 2017:

Initially requiring

-XX:+UseCGroupMemoryLimitForHeap

Backported in Red Hat OpenJDK 8

JDK 11, 2018:

Enabled by default

-X:-UseContainerSupport to turn it off

OpenJDK container limit awareness

The JVM has gradually learned about container resource limits (cgroups v1 and then
v2)
Initially for compatibility reasons, opt-in
Later on by default with an opt-out

OpenShift BuildConfigs

9 https://red.ht/3oObZls

Building on top of the normal S2I workflow, leveraging OpenShift buildConfigs to
cherry-pick the desired build artefacts (the app) out of the S2I output, and insert it into
a new image based on a slimmer, runtime-only base

See the blog post for full details

1
0

What time is it?
A case study

🎩 podman run --rm $IMG ls -l /etc/localtime
lrwxrwxrwx 1 root root 29 Oct 14 01:34 /etc/localtime ->
../usr/share/zoneinfo/Europe/London

🎩 podman run --rm --tz Europe/Prague $IMG ls -l
/etc/localtime
-rw-r--r--. 1 root root 2338 Nov 29 17:55 /etc/localtime

Photo: © Siddarth Pavanje, CC-BY-SA 2.0 https://www.flickr.com/photos/siddarthpavanje/8335113466/

A casy study of a recent issue
How RHEL configures the timezone (normally): symlink, tzdata

The timezone baked into a container image might not be what you ,running it, want

Podman new feature to specify the desired TZ at runtime

Implementation replaced symlink with a copy of the tzdata from host

Problem: java does not read tzdata files (internal implementation)
But it does need the symlink destination to established desirer TZ name
Podman broke this

https://www.flickr.com/photos/siddarthpavanje/8335113466/

11

JVM warm-up times

AOT / Native Image
Checkpoint/restore

CRIU - criu.org

Project CraC

wiki.openjdk.java.net/display/crac

▸ GraalVM (Oracle Labs)

▸ JEP 295: Ahead-of-Time Compilation
･ added in JDK9 (2017)
･ removed again in JDK17 (2021)

▸ Quarkus - quarkus.io

▸ Mandrel
red.ht/2XASwIQ

For some domains, such as Functions-as-a-Service, initial start-up time is crucial and
the JVM’s warm-up times (the initialisation of the JVM, and Hotspot, the JIT compiler,
establishing hot paths, etc) are not a good fit

There are a number of efforts taking place to address this

Oracle Labs (a distinct part of Oracle from that responsible for Java) have a project
GraalVM which implements a native-image compiler alternative to Hotspot. This relies
upon a “closed-world”: all executable code known at compile time, no run-time code
generation or loading

As GraalVM is a research project, building products on top can be challenging.
Mandrel is a specialised distribution of GraalVM, sponsored by red hat, that is used
as a sort-of “clearing house” to provide a stable distribution of a subset of GraalVM
suitable to support products built on top.

Quarkus is… a lot of things; java framework
kubernetes/openshift-supporting microservices, builds on top of Mandrel

CRIU - user-space tool for “freezing”/suspending a process to a state that can be
moved between machines etc, then later “thawed”: such as a post-initialisetion
JVM/warm hotspot
https://developers.redhat.com/blog/2020/10/15/checkpointing-java-from-outside-of-jav

https://criu.org
https://wiki.openjdk.java.net/display/crac
https://quarkus.io
https://t.co/ZLR0R35Xy0?amp=1
https://developers.redhat.com/blog/2020/10/15/checkpointing-java-from-outside-of-java

a

Still in early stages
Related: unfortunately named https://openjdk.java.net/projects/crac/
https://wiki.openjdk.java.net/display/crac

https://developers.redhat.com/blog/2020/10/15/checkpointing-java-from-outside-of-java
https://openjdk.java.net/projects/crac/

Future

12

https://buildpacks.io/

Separate builder/runner images

13

Cloud-native Buildpacks
In OpenShift

Originally created by Heroku in 2011 and now adopted by Cloud Native Computing
Foundation in 2018

Avoids the issue of layering the output image on top of a builder image by separating
out the builder elements from a base “runtime” image into one or more “packs”

Worth a mention - ubui-micro?
https://www.redhat.com/en/blog/introduction-ubi-micro

https://buildpacks.io/

Bespoke OpenJDK runtime via Java Modules

14

The OpenJDK distribution is quite large

Your application may not need all of it

Since JDK9 it’s modularized

Jlink, jdeps can be used to establish which java modules your application uses, and
build a CUSTOM JDK with just those modules

Pilot work to integrate that into the builder processes

Additional wrinkle: system dependencies per-module need to be recorded

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you
jdowland@redhat.com

15

