
Picking a winner
cost models for evaluating
stream-processing programs

Jonathan Dowland <jon.dowland@ncl.ac.uk>
UK Systems ‘21

Jon Dowland
p/t PhD student year now in 5th year

StrIoT

https://github.com/striot/striot

Purely-functional stream-processing system
Implemented in Haskell, open source
User composes program from a fixed set of functional operators
Without considering deployment issues (a single contiguous program)
Optimisers re-write the program to perform better according to NFRs

Logical optimiser and cost models my focus

https://github.com/striot/striot

StrIoT operators

Filter
streamFilter α → α

streamFilterAcc α → α

Map
streamMap α → β

streamScan α → β

Window
streamWindow α → [α]

streamExpand [α] → α

Combine
streamMerge [α] → α

streamJoin α → β → (α,β)

4 classes of operators; 8 operators total; some inverses of others eg window/expand
Simplified types: just in and outs here

(highlight: merge, filter)

Logical Optimiser: term-rewriting

streamFilter p (streamMerge [s1,s2…])

= streamMerge [streamFilter p s1,

 streamFilter p s2, …]

Since the input program is a pure-functional program we can use equational
reasoning and term rewriting
A set of 21 semantically-preserving rewrite rules (and a further 6
semantically-altering)
Derived by pair-wise comparison of the operators
Example rule: filter hoisting

Rewrite rule implementation

-- streamFilter f >>> streamFilter g = streamFilter (\x -> f x && g x)

filterFuse :: RewriteRule
filterFuse (Connect (Vertex a@(StreamVertex _ Filter (p:_) _ _))
 (Vertex b@(StreamVertex _ Filter (q:_) _ _))) =

let c = a { parameters = [[| (\p q x -> p x && q x) $(p) $(q) |]] }

in Just (removeEdge c c . mergeVertices (`elem` [a,b]) c)

A happy accident: it was possible to implement rewrite rules as plain functions
The left-hand side as a pattern-match, due to the choice of graph library we use
Andrey Mokhov

Cost models for evaluation

We can generate program variants with rewrite rules
We need a way of determining which variant is best

Queuing system model

Mitrani, I. (1997). Probabilistic Modelling. Cambridge: Cambridge
University Press. doi:10.1017/CBO9781139173087.001

Utilisation (ρ) = arrival rate (λ) / service rate (μ)

I’m exploring representing a StrIoT program as a queuing system
Working with Dr Paul Ezhilchelvan and Emeritus Prof. Isi Mitrani
Outside my comfort zone
The holy grail for me has been Isi Mitrani’s book

For what I’m going to show today key formula is utilisation

Steady state

λin

µm

𝑓·λin

µf

𝑓

λin

1 - 𝑓·λin

streamFilterstreamMap

Modelling StrIoT operators

��

StrIot operators map to “servers” in queuing theory parlance. We define some
additional metadata to represent parameters for the model:

● For each operator instance we define a (mean avg.) service rate: how fast that
operator can process events

● We model (mean avg.) arrival rates into the program. Note that arrival rates
are not influenced by service rates, so the rate out of that map matches the
rate in

● To model the filter rejecting events, we define a selectivity and route the
rejected events out of the stream

Encoding queueing theory properties

data StreamVertex = StreamVertex
{ vertexId :: Int
, operator :: StreamOperator
, parameters :: [ExpQ]
, intype :: String
, outtype :: String
, serviceTime:: Double }

data StreamOperator = Map | Filter Double {- selectivity -}
| Expand | Window | Merge | Join | Scan
| FilterAcc Double {- selectivity -}
| Source Double {- arrival rate -}
| Sink deriving (Show,Ord,Eq)

Straightforward to extend data types with Queuing theory parameters
Before
after

Re-write rules and queueing theory

-- streamFilter f >>> streamFilter g = streamFilter (\x -> f x && g x)

filterFuse :: RewriteRule
filterFuse (Connect (Vertex a@(StreamVertex _ (Filter sel1) (p:_) _ _ s1))
 (Vertex b@(StreamVertex _ (Filter sel2) (q:_) _ _ s2))) =

let c = a { operator = Filter (sel1 * sel2)
 , parameters = [[| (\p q x -> p x && q x) $(p) $(q) |]]
 , serviceTime = s1 + (sel1 * s2) }

in Just (removeEdge c c . mergeVertices (`elem` [a,b]) c)

And extending re-write rules similarly straightforward
Highlighted section new

Example outcome #1 of 3

Reject over-utilised operators

The first example of what we can do is at the operator level

Input program: over-utilised operator

streamSource tempSensor

streamSource tempSensor streamMerge

streamFilter over100

streamMap f

streamSinkstreamSource tempSensor

λ = 1

λ = 1

λ = 1

λ = 3

µ = 1

𝑓 = 1/2

µ = 3/2

ANIMATION
Here the filter operation is determined to be overutilised
This would be ruled out by the cost model

Re-written program: no over-utilised operators

streamSource tempSensor

streamSource tempSensor

streamMerge

streamFilter over100

streamMap f

streamSinkstreamSource tempSensor
λ = 1

µ = 3/2

streamFilter over100
λ = 1

λ = 1

𝑓 = 1/2

𝑓 = 1/2

𝑓 = 1/2

λ = 1/2

λ = 1/2 λ = 3/2

streamFilter over100

Re-write rules applied,
Several program variants derived (how many?)
One of the program variants generated by the logical optimiser results in no
overutilisation

Example outcome #2 of 3

Discard plans with Nodes above a utilisation threshold

The next two examples are at the Node level in a deployment

Reduce the number of nodes needed for deployment by hoisting a map upstream to
the Edge, increasing the utilisation of Edge nodes

Input program

streamSource tempSensor

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamSink

7 expensive operations (each ρ = 1)

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

A series of expensive operations each rho = 1

Partition assignment (no max. Node Utilisation threshold)

streamSource tempSensor

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

2 Nodes

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp streamSink

Without no max node utilisation specified, the cost model would choose a partitioning
scheme that allocated 2 nodes

Partition assignment (max. Node Utilisation = 3)

streamSource tempSensor

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

3 Nodes

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp streamSink

Considering max node utilisation specified as 3, so no more than 3 of the expensive
operations can be allocated to a single node, the smallest viable partitioning scheme
becomes 3 nodes (and is picked by the cost model)

Example outcome #3 of 3

Reduce required Cloud nodes by increasing Edge utilisation

Input program

streamSource tempSensor

streamSource tempSensor

streamMerge

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamSink

maxNodeUtil = 3.0

streamMap expensiveOp

Here consider a program with a string of expensive operations which would again
force a partitioning plan with more “cloud” nodes than desired

Partition assignment (input program)

streamSource tempSensor

streamSource tempSensor

streamMerge

streamMap expensiveOp

streamMap expensiveOp

4 Nodes
(number of sources+2)

streamMap expensiveOp

streamSink

streamMap expensiveOp

Considering that limitation, the smallest number of nodes in a plan is four: the sources
have to be separate; then a maximum of three of the Maps per cloud node

Partition assignment (re-written program)

streamSource tempSensor

streamMap expensiveOp

streamSource tempSensor

streamMap expensiveOp

3 Nodes

streamMerge

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamSink

However the logical optimiser had produced a derivative program which hoisted one
of the map operations upstream to the “edge” nodes. This increased their utilisation
(within the limit) but reduced the number of nodes requires in a partitioning plan
(corresponding to fewer “cloud” nodes needed)

Future work

● Heterogeneous nodes
○ (capabilities, limitations, costs…)

● Non-functional requirements
○ Bandwidth

● Further modelling work
● Operator semantics (streamWindow)
● quickSpec - machine-assisted law discovery

Thank you!
Q&A

Jonathan Dowland <jon.dowland@ncl.ac.uk>
UK Systems ‘21

