
 
 

PhD Proposal: Declarative, Distributed Functional Stream Processing 
Jonathan Dowland <jon.dowland@ncl.ac.uk>, March 2018 

 
Background 
Various modern applications in domains ranging from smart cities to healthcare have a                         
requirement for the timely processing of very large volumes of data, such as that generated by                               
sensors in the Internet of Things (IoT). Such systems may need to meet a range of other                                 
requirements, including reliability, security, or energy efficiency, for example to prolong the                       
battery life of sensors in the field. 
 
The combination of requirements, very high volume of data and the desire for timely processing                             
makes the design and management of the supporting infrastructure very challenging. The                       
current generation of IoT tools adopt the principles of stream processing and are designed                           
around a three-tier architecture: sensors generate data, which is sent on to a local gateway (e.g.                               
smartphone, or an embedded device) to be collated before being passed on to the Cloud for                               
processing. However, in some domains it could be beneficial to perform some processing on                           
the gateway or on the sensors themselves, to reduce the volume of data sent onwards to the                                 
cloud, or to reduce the frequency with which sensors must invoke their networking hardware,                           
thus reducing energy expenditure. 
 
Foundations 
We are exploring an alternative approach: a system               
whereby the stream processing operations and the             
non-functional requirements are described       
declaratively as inputs to an Optimiser, which             
automatically determines the most appropriate         
deployment onto the available resources, which           
may include sensors and gateways. Monitoring of             
the deployment is used to evaluate the             
performance of the Optimiser and could also be               
used for run-time adaptation. The initial implementation (by Peter Michalák) used an extended                         
version of SQL as the method of describing the computation. 
 
In contrast, in our project we are exploring using functional programming to describe the                           
computation. Using the pure functional language Haskell, a prototype has been developed                       

1

where the stream processing is defined in terms of a restricted set of functional operators with                               
well understood semantics. This prototype has two distinct components: Library code to                       
support stream processing in which segments of the stream are spread across multiple                         
compute nodes; and the Optimiser. 

1 ​https://github.com/striot/striot 

1/3 



 
 

My research will be focussed on the optimiser and deployer (another PhD student — Adam                             
Cattermole — is working on the stream processing library). 
 
Existing progress 
As well as educating myself on functional programming, my work so far has been to design and                                 
build an initial optimiser and deployment system. This has resulted in an end-to-end system that                             
takes in a stream-processing graph and outputs source code ready for deployment, partitioned                         
according to a user-defined mapping. We employ a library “Alga” to describe the                         2

stream-processing graph. Alga is based on an algebra of graphs. This provides us with a strong                               
formal foundation for future work on graph rewriting. 
 
When this program is executed, a set of individual source code files are generated, one per                               
partition. These can be deployed to separate nodes (via a system such as Docker Compose )                             

3

and executed. 
 
Further work 
My future work will focus on the optimisation of distributed stream processing graphs. We will                             
explore two opportunities: 
 
Automatic Partitioning of the Stream Processing Graph: ​The present system requires the user                         
to supply a predetermined partitioning scheme, specifying which functional operators shall be                       
distributed to each node in the deployment environment. We will explore the automatic                         
selection of a mapping by the Optimiser based on the non-functional requirements, a                         
“catalogue” of available infrastructure for deployment (sensors, gateways, public/private cloud                   
nodes, etc.), and a set of cost models predicting the cost of a specific deployment. For example,                                 
it has been demonstrated that there can be benefits in performing stream processing on                           
sensors themselves, to reduce the volume or frequency of data transmission onwards to                         
gateways, thereby improving sensor battery life . Initially, the Optimiser will generate a                       

4

configuration of the input stream-processing graph once, based on the information available to                         
it at “compile” time. However, we enhance this through collecting run time performance                         
information in order to evaluate the performance of the Optimiser and whether or not it has                               
made an appropriately optimal assignment of operators and partitions. There are a number of                           
ways that this could be achieved in a black-box fashion, depending on the specifics and features                               
provided by the deployment environment. It is likely desirable to be able to collect information                             
on the performance of individual stream operators, perhaps amongst several deployed to a                         

2 Andrey Mokhov. 2017. Algebraic graphs with class (functional pearl). In ​Proceedings of the 10th ACM                               
SIGPLAN International Symposium on Haskell (Haskell 2017). ACM, New York, NY, USA, 2-13. DOI:                           
https://doi.org/10.1145/3122955.3122956  
3 ​https://docs.docker.com/compose/ 
4 P. Michalák and P. Watson, "PATH2iot: A Holistic, Distributed Stream Processing System," ​2017 IEEE                             
International Conference on Cloud Computing Technology and Science (CloudCom)​, Hong Kong, 2017, pp.                         
25-32. 

2/3 

https://docs.docker.com/compose/


 
 

particular node. To achieve this, we may wish to extend the stream graph to add “taps” for                                 
collecting such data. If the system was to be extended to operate at run-time, this performance                               
information could be used as an input for run-time recalibration of the stream processing graph,                             
without dropping any data in transit from sensors. Further exploration is needed before we will                             
know if it realistic for this could be done within the scope of this PhD. 
 
Optimisation of the Stream Processing Graph: We will explore a range of optimisations. Some                           
will exploit the well-understood semantics of the restricted set of functional operators provided                         
by the system. For example, two adjacent Map operators can be “fused” together, the parameter                             
of the new Map being composition of the parameters of the original operators . This process                             

5

(known as deforestation) prevents the generation of intermediate list data structures. Other                       
sources of optimisations may include those from the relational world, as well as possibly                           
domain-specific rules, perhaps supplied by the user of the system as an additional input. 
 
To specify and enact these optimisations, we will explore using graph rewriting rules for the                             
Stream Processing Graph. As currently architected, the system requires the user to describe the                           
stream-processing graph in terms of a data structure within a Haskell program. In practise this                             
means embedding snippets of Haskell code within string literals. It would be better if the user                               
could compose the stream-processing graph as first-class Haskell code itself. This would                       
require an exploration of tools and language extensions, and the possible embedding of a                           
Haskell compiler/interpreter into the Optimiser. 

5 PEYTON JONES , S., TOLMACH , A., AND HOARE , T. 2001. Playing by the rules: Rewriting as a practical                                         
optimisation technique in GHC. In Proceedings of the Haskell Workshop. 
 

3/3 


